If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-58x-80=0
a = 5; b = -58; c = -80;
Δ = b2-4ac
Δ = -582-4·5·(-80)
Δ = 4964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4964}=\sqrt{4*1241}=\sqrt{4}*\sqrt{1241}=2\sqrt{1241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-58)-2\sqrt{1241}}{2*5}=\frac{58-2\sqrt{1241}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-58)+2\sqrt{1241}}{2*5}=\frac{58+2\sqrt{1241}}{10} $
| F(x)=8x^2-7x6+6 | | 8x=6x+11 | | 3x+4(6)=25 | | -(15+3x/42)=-3x-19/46 | | 6(x+3)=6x=18 | | t+48=755 | | 0=6x-0.2x^2 | | 14+7x=5x-26 | | 200x=40.000 | | 35+a+41=180 | | 140+1x=180 | | 6y+2=-7y+9 | | 5k-2=10+8k | | +x49=72 | | 5t+12=4t-3 | | 2(8k-2)=-116 | | A(t)=9.75(1+.15)^5 | | x+59+89+x=180 | | 5(n-3)-2(2n-3)=3(n+4) | | 3a+5=5a-17 | | 24x+33=3(5x+21)-9 | | -22.7=-35+u/6 | | 0.5x/2=-40/2 | | -8-5x=20 | | 0=-9.8x^2+20x+4 | | 3=13m | | i+22=27 | | 13x^2-65x+26=0 | | 84=r-17 | | 72x+12x^2+108=0 | | 3(n+5)-2(n-3)=8 | | 0=2^2+x+3 |